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Abstract. Single-particle separation energies of protons or neutrons in nuclei near the closed shells are
examined in the chains of isotopes or isotones. From the observed dependences we determine spins and
parities of the single-particle orbitals and their sequence in nuclei far from the stability line, where direct
experimental information on single-particle characteristics is not available at present.

PACS. 21.10.Dr Binding energies and masses – 21.60.Cs Shell model – 21.10.Pc Single-particle levels
and strength functions

1 Introduction

Nucleon separation energies Bn=π,ν are the main structure
indicators which define the borders of stability of nuclei
against nucleon decay in the regions far from the stability
line. In this sense they determine the global characteris-
tics of nuclei. The difference between Bπ and Bν for the
neighbouring isobars represents the energy released in the
β-decay (Qβ−(Z,N) = Bπ(Z+1, N−1)−Bν(Z,N)+mν−
mπ −me), thus providing information on the rate of this
process which is one of the main modes of nuclear decay.
At the same time these parameters may also reveal pe-
culiarities of nuclear structure. This has a direct impact
on the spherical nuclei near the closed shells where the
spherical shell structure and related symmetries manifest
themselves in the most profound way. This aspect of the
study of single-particle separation energies is investigated
in the present paper.

2 General considerations

Our aim is to study the changes in the neutron (pro-
ton) separation energies in the chain of isotones (isotopes)
caused by a successive addition of protons (neutrons) to
the nuclei. For the illustration of our line of arguments
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let us consider the Hartree-Fock method where the single-
particle energies εi are defined as

εi = 〈i|T̂ |i〉 +
∑

k(εk<εF)

a〈ik|ϑ̂|ik〉a , (1)

and where by neglecting the rearrangement effects, the
single-particle separation energies become Bi = −εi

(Koopmans’ theorem [1]). Then the variation of the sepa-
ration energy of the valence nucleon “i” (neutron or pro-
ton) caused by an addition to the system of nucleons of
the other type, which occupy the orbitals “p” (εp > εF),
may be given as

δBi = −
∑

p(εp>εF)

a〈ip|ϑ̂|ip〉a , (2)

where εF refers to the initial nucleus. Thus, in this ap-
proach the variation of the binding energy (i.e. the sepa-
ration energy) of the valence nucleon equals the potential
energy of its interaction with the added nucleons of the
other type taken with the opposite sign. If we remove nu-
cleons from the orbits p′, the corresponding variation of
the binding energy is

δBi = +
∑

p′(εp′<εF)

a〈ip′|ϑ̂|ip′〉a , (3)

where the sum over p′ refers to the removed nucleons,
while εF also refers to the initial nucleus.
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Formulae (2) and (3) are written schematically,
whereas in the realistic case we must specify the cou-
pling scheme and corresponding quantum numbers for the
description of multiparticle wave functions. To this aim
we select multiparticle states formed of the groups of nu-
cleons {jn; s, J}, where each group contains n particles
(0 ≤ n ≤ 2j + 1; for the filled orbit we have n = 2j + 1)
and it is characterized by the seniority quantum number s
(additional quantum numbers α are possible) and the total
angular momentum J of the group. For the lowest states
of nuclei we have s = J = 0 for even n, while for odd n the
seniority quantum number s = 1 and J = j. An additional
complication arises if we consider separation energy in
odd-odd nuclei. In this case we have to specify the total nu-
clear spin I arising from the total spins of the proton {jπ}
and neutron {jν} valence groups, |jν − jπ| ≤ I ≤ jν + jπ,
perform the calculations for all components of the proton-
neutron multiplet and select the state with spin I cor-
responding to the lowest energy. Thus, to determine the
separation energies we should calculate the energy of the
proton-neutron interaction between the groups of protons
and neutrons, each built in the jj-coupling scheme and
characterized by the s, α and J quantum numbers.

3 Multiparticle matrix elements of the
interaction

We consider two groups of nucleons {jn1
1 ; s1, J1} and

{jn2
2 ; s2, J2}, which have the total spin I, and calculate

the total interaction energy between these groups. Actu-
ally we are interested in the case when j1 ∈ π and j2 ∈ ν
(or vice versa). The corresponding matrix element is

M (jn1
1 s1J1, j

n2
2 s2J2; I) ≡〈

jn1
1 s1J1, j

n2
2 s2J2; I

∣∣∣∣ ∑
i,k

ϑ̂(ik)
∣∣∣∣jn1

1 s1J1, j
n2
2 s2J2; I

〉
. (4)

Here the index “i” refers to the group {jn1
1 }, while the

index “k” refers to the group {jn2
2 }. By using fractional

parentage expansions [2,3] for antisymmetrical states in
the jj-coupling scheme,

|jn1
1 s1J1〉 =∑

J01s01

〈jn1
1 s1J1|}jn1−1

1 s01J01, j1〉|jn1−1
1 s01J01, j1;J1〉 (5)

and

|jn2
2 s2J2〉 =∑

J02s02

〈jn2
2 s2J2|}jn2−1

2 s02J02, j2〉|jn2−1
2 s02J02, j2;J2〉, (6)

we obtain the matrix element (4) in the form

M (jn1
1 s1J1, j

n2
2 s2J2; I) = n1n2(2J1 + 1)(2J2 + 1)

×
∑

s01s02J01J02LJ

(2L+ 1)(2J + 1)

J01 j1 J1

J02 j2 J2

L J I


2

×〈jn1
1 s1J1|}jn1−1

1 s01J01, j1〉2
×〈jn2

2 s2J2|}jn2−1
2 s02J02, j2〉2 · V p-p

J (j1j2) , (7)

where V p-p
J (j1j2) = 〈j1j2J |ϑ̂(1, 2)|j1j2J〉 is the particle-

particle matrix element of the interaction with the total
angular momentum of the pair J . Note that, though in
our case {j1} and {j2} refer to different types of nucleons
by taking into account the charge-exchange components
of nuclear forces (∼ τ 1 · τ 2), we must also calculate the
matrix element VJ between the antisymmetrized states
of the proton-neutron pair. Consider the case where n1

is odd (s1 = 1, J1 = j1 in such case), while n2 is even
(s2 = J2 = 0). Then for fractional parentage coefficients
entering formula (7) we have the expressions

〈jn2
2 s2 = 0 J2 = 0|}jn2−1

2 s02 = 1 J02 = j2, j2〉2 = 1 (8)

and

〈jn1
1 s1 = 1J1 = j1|}jn1−1

1 s01J01, j1〉2 =

(2j1 − n1)
n1(2j1 − 1) δ(J01, 0)

+
2(n1 − 1)(2J01 + 1)
n1(2j1 − 1)(2j1 + 1)

[
1 + (−1)J01

]
2

, (9)

where in (9) s01 = 0 if J01 = 0, while s01 = 2 if J01 
= 0;
J01 is even.

As a result, after some algebraic transformations, the
matrix element (4) takes the form

M
(
jn1 odd
1 s1 = 1J1 = j1, j

n2 even
2 s2 = 0J2 = 0; I = j1

)
=

n1n2

(2j1 + 1)(2j2 + 1)

∑
J

(2J + 1)V p-p
J (j1j2) . (10)

The expression for the matrix element (4) is more compli-
cated in the case when both n1 and n2 are odd. To write
it in a more solid form we introduce auxiliary symbols as
follows:

v2
1 =

(n1 − 1)
(2j1 − 1) , v2

2 =
(n2 − 1)
(2j2 − 1) ,

u2
1 = 1− v2

1 =
(2j1 − n1)
(2j1 − 1) ,

u2
2 = 1− v2

2 =
(2j2 − n2)
(2j2 − 1) . (11)
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After certain transformations we obtain the result

M
(
jn1 odd
1 s1 = 1J1 = j1, j

n2 odd
2 s2 = 1 J2 = j2; I

)
=[

v2
1(u

2
2 − v2

2)
1

(2j2 + 1)
+ v2

2(u
2
1 − v2

1)
1

(2j1 + 1)
+ v2

1v
2
2

]
×

∑
J

(2J + 1)V p-p
J (j1j2) +

(
v2
1v

2
2 + u2

1u
2
2

)
V p-p

I (j1j2)

+
(
v2
1u

2
2 + u2

1v
2
2

)
V p-h

I (j1j2) . (12)

Here

V p-h
I (j1j2) = −

∑
J

(2J + 1)
{
j1j2I

j1j2J

}
V p-p

J (j1j2) (13)

represents the expansion of the particle-hole matrix ele-
ment in terms of the particle-particle ones (Pandya rela-
tionship [4]). Note that the u and v terms as defined by
(11) are the analogs of the u, v coefficients in the Bogoli-
ubov transformation and by the appearance they coincide
with those obtained in the approach of isolated j-level,
with the inclusion of the blocking effect.

In the special case of j = 1/2 and n = 1 formula (11)
would be undetermined. However, it follows from the
derivation of (12), that in this case one should substitute
(2j − n)/(2j − 1)→ 1 and (n− 1)/(2j − 1)→ 0.

In the case of both n1 and n2 even (s1 = s2 = J1 =
J2 = 0), the expression for the matrix element M (for-
mula (4)) has also the form (10), but both n1 and n2

are now even there. Note that multiparticle matrix ele-
ments involved in the nuclear-structure calculations were
also considered in ref. [5]. In the present work we calcu-
late the separation energy of the valence nucleon (proton
or neutron) by the subsequent filling of the free orbitals
(or by removing corresponding particles from the filled
orbitals), in accordance with the selected single-particle
scheme. Thus, for this evaluation we only need the matrix
elements (10) and (12) with n1 = s1 = 1.

4 Selection of the interaction

There are two ways to define the matrix elements
V p-p

J (j1j2) and V p-h
J (j1j2) that enter formulae (10) and

(12). The first way is to calculate them using an effec-
tive interaction like the effective forces that we have suc-
cessfully employed, in the framework of the RPA method,
to describe different properties of nuclei close to 208Pb,
132Sn and 100Sn [6–10], where the corresponding exper-
imental information is available. This interaction, which
we label here as the “standard” one, was also used to
study the properties of hypothetical nuclei in the vicinity
of 164Pb [11] as well as for the calculation of the mass
surface profile in nuclei close to 78Ni [12]. It has the form

ϑ̂(1, 2) = exp
(
−r212
r20

)
·
(
V + Vσσ̂1σ̂2 + VT Ŝ12

+Vτ τ̂ 1τ̂ 2 + Vτσσ̂1σ̂2 · τ̂ 1τ̂ 2 + VτT Ŝ12τ̂ 1τ̂ 2

)
, (14)

where V = −9.95, Vσ = 2.88, VT = −1.47, Vτ = 5.90,
Vτσ = 4.91, VτT = 1.51 (all in MeV) and r0 = 1.8 fm.

The second approach is to use experimental energies
of the particle-particle (hole-hole) and particle-hole mul-
tiplets in odd-odd (Z ± 1, N ± 1) and (Z ± 1, N ∓ 1) nu-
clei, neighbouring the magic nuclide (Z,N). For exam-
ple, consider the case when the spectrum of the proton-
neutron multiplet, which is built on the levels jπ and jν
being the closest to the Fermi surface, is available in the
(Z + 1, N + 1) nuclei. Then using the arguments based
on Koopmans’ theorem and taking into account the resid-
ual interaction between the valence proton and neutron
quasiparticles, one obtains the formula

V p-p
J (jπjν) = B(Z + 1, N) +B(Z,N + 1)

−B(Z,N)−B(Z + 1, N + 1) +EJ
exc(jπjν) , (15)

where B are the ground-state binding energies, while EJ
exc

is the corresponding excitation energy of the state with
spin J belonging to the proton-neutron multiplet. In the
same way in the (Z−1, N+1) nuclei, if the energies of the
lowest proton-neutron particle-hole multiplet are known
from the experiment, we have the relation for the orbitals
lying the most closely to the Fermi surface:

V p-h
J (jπ′jν) = B(Z − 1, N) +B(Z,N + 1)

−B(Z,N)−B(Z − 1, N + 1) + EJ
exc(jπ′jν) , (16)

where the prime in jπ′ means that we consider the hole
state. Note that the particle-particle matrix elements may
be expressed through the particle-hole ones by using the
inverse Pandya transformation:

V p-p
I (j1j2) = −

∑
J

(2J+1)
{
j1 j2 J

j1 j2 I

}
V p-h

J (j1j2) . (17)

It is important that the “empirical” matrix elements de-
fined by (15) and (16) are the effective ones and implicitly
include the bulk of nuclear correlations. At the same time,
formulae (15) and (16) may be easily generalized for the
case of orbitals positioned further from the Fermi surface.

To summarize, in our calculations instead of Bi
n, we

determine their variations, δBi
π,ν for one type of nucleons,

arising from the addition (or removal) of nucleons of the
other type. Thus, the Bi

n values are determined up to a
constant term, which is the same for all members of a
chain of isotopes (or isotones).

5 Results of the calculations

Figure 1 shows the experimental [13] and calculated pro-
ton separation energies in the Z = 83 isotopes as a func-
tion of neutron excess above the closed shell at N = 126
within the interval of (N−Z) from −12 to +4. The calcu-
lations, performed here, were carried out by using interac-
tion (14), with normalization to the 209Bi nucleus. Differ-
ent theoretical schemes, together with the experiment for
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ν
ν

Fig. 1. Proton binding energies for the chain of isotopes with
Z = 83. Open circles (AME95) present empirical data from the
Atomic Mass Evaluation-95 [13]. Triangles show results of our
calculations performed with the “standard” interaction (14)
and correspond to different variants of the relative disposition
of the neutron 3p3/2 and 2f5/2 orbits in the neutron-deficient
isotopes of Bi.

209Bi, manifest that the proton is in the 1h9/2 state, while
using the spectra and binding energies of the 207Pb and
209Pb nuclei neighbouring to 208Pb, one obtains the ener-
gies of the neutron 3p3/2, 2f5/2, 3p1/2 and 2g9/2 states
equal to −8.27, −7.94, −7.37 and −3.94 MeV, respec-
tively. Experimentally the 3p3/2 and 2f5/2 levels are close
to each other, thus a small variation of the neutron number
N may cause their sequence to be interchanged. Conse-
quently in fig. 1 we illustrate two variants of calculations:
the first one when in nuclei with N substantially smaller
than 126 we take as the lowest one the 3p3/2 state (as in
207Pb), and the second one for the case when the neutron
2f5/2 state is lower than the 3p3/2 one. One can see that
the second variant gives us better agreement with the ex-
periment. The lowering of the 2f5/2 level below 3p3/2 with
the decrease of N is also confirmed by the other data. For
example, in 198

83Bi115 and
196
83Bi113, one can see [14] the low-

lying 7+ isomers with the extremely low energy in the case
of 198

83Bi115. These isomers belong to the {π 1h9/2, ν 2f5/2}
configuration, which evidently is the lowest one in these
odd-odd nuclei. Moreover, the interchange of the sequence
of the aforementioned states is in agreement with the ideas
presented in ref. [15]. Namely, the decrease of the aver-
age neutron spin-orbit potential in (Z < N) nuclei with
smaller N at fixed Z leads in our case (in comparison to
207Pb) to a relative lowering of the neutron 2f5/2 orbital
and to a relative raising of the 3p3/2 orbital.

In order to compare the present results with those
obtained by using other residual interaction we have
performed calculations with the effective forces deter-
mined in [16]. The latter interaction was obtained by the
12-parameter fitting to the values of the “empirical” pair
matrix elements VJ(j1j2) derived from the experimental
data by using the ansatz represented by formulae (15)
and (16), both for odd-odd and even-even nuclei adjacent

ν
ν

Fig. 2. The same as in fig. 1, but with the interaction from
the work [16].

to magic nuclei near the stability line. This interaction
represents a superposition of the Yukawa-type attractive
and repulsive central components (long-range repulsion
was included for a better description of the T = 1 two-
quasiparticle states) with different radii, r01 and r02 (we
used the parameter set with r01 = 1.415 fm and r02 = 2.0
fm), and includes also tensor and spin-orbit forces with
r0 = 1.415 fm, that corresponds to the π-meson mass.
Since the contribution of spin-orbit components to the
interaction from [16] is rather vague, the values of
corresponding parameters are small and comparable with
their uncertainties (especially for the triplet-even states),
we have omitted the spin-orbit terms in this interaction.
Our test calculations reveal only a small contribution
of spin-orbit component to the total interaction [16].
Note that the main effect of the spin-orbit forces is to
cause the formation of the mean-field spin-orbit splitting
rather than two-quasiparticle multiplet splitting. We
have to mention here that, according to [17], the radius
of the spin-orbit interaction is much smaller than it was
adopted in [16]. On the microscopical level this has a
natural explanation as the aforementioned two-body force
is conditioned by the exchange of heavier mesons. The
results of corresponding calculations are shown in fig. 2.
One can easily see from figs. 1 and 2 that the results of
both calculations are similar.

Figure 3 illustrates the systematics of neutron separa-
tion energies in isotones with N = 127 (valence neutron
in a 2g9/2 state); the empirical data [13] are compared to
the results of our three calculations. The first calculation
was carried out with the “empirical” matrix elements, ob-
tained by applying relations (15) and (16) and by using the
excitation energies of 210Bi (multiplet {ν2g9/2, π1h9/2})
and 208Tl (multiplet {ν2g9/2, π3s1/2}). The calculations,
normalized to the neutron separation energy of 209Pb,
show an excellent agreement with the experiment. The
other calculation is performed by using interaction (14).
Here one can see a good qualitative agreement with the
experiment, including a reproduction of the irregularity at
(Z − 82) = 1, but the slope of the curve is a little smaller
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Fig. 3. Neutron binding energies for the N = 127 isotones.
The data taken from the Atomic Mass Evaluation-95 [13] are
shown by open circles, while the results of calculations using
the “empirical” matrix elements as defined by ansätze (15)
and (16) are indicated by filled circles. Calculations using the
“standard” interaction (14) and the interaction from [16] are
shown by open triangles and open diamonds, correspondingly.

Fig. 4. Neutron binding energies in nuclei close to 132Sn. Solid
boxes show experimental values of the separation energies [19],
while open circles are the data of systematics [13]. The trian-
gles stand for the results of calculations that use the inter-
action (14), while open boxes show the calculations with the
KH5082N interaction [18]. Results of calculations that use the
interaction from [16] are marked by open diamonds.

than in the experiment. We also note that the two-body
interaction [16] that was defined for the description of two-
quasiparticle states in the “diagonal” scheme (we used this
scheme also to determine the separation energies, see the
discussion above) shows slightly better results than the
“standard” interaction determined in the framework of
the diagonalization procedure.

The calculated neutron separation energies for isotones
with N = 83 close to 132Sn are illustrated by fig. 4. The
theoretical results are normalized to the value of Bν for
the isotone with (Z − 50) = 4, where the experimental
uncertainty is small. In parallel to the matrix elements

Fig. 5. The same as in fig. 4, but with the addition of the short-
range two-body spin-orbit component into the interaction.

obtained by using the two-body interaction (14) we em-
ployed corresponding matrix elements for the configura-
tion {ν2f7/2, π1g7/2} calculated in the framework of the
G-matrix approach based on the Bonn A two-body inter-
action (KH5082N effective forces, see [18]), as well as the
matrix elements that correspond to the two-body interac-
tion [16]. As is seen in fig. 4, the most striking disagree-
ment between the calculations and the data of system-
atics [13] is the absence in the latter of any irregularity
at (Z − 50) = 1, observed at (Z − 82) = 1 in fig. 3.
However, one should mention that recent experimental
results on the values of neutron separation energies in
the 132In, 133Sn and the 134Sb nuclei obtained from the
mass values [19] and our preliminary experimental val-
ues for neutron binding energies in 135Te and 136I have
much better agreement with the results of our calcula-
tions, see fig. 4. Recall that the 132Sn and 208Pb nuclei
are in some respect “twin” systems having similar shell
structures and properties, since the quantum numbers of
most of the single-particle orbitals relate simply as n→ n,
' → ' + 1, j → j + 1 [20]. Unfortunately, at the present
time there is no sufficient experimental information on
the {ν2f7/2, π1g9/2} configuration in 134Sb, thus we could
not perform calculations using the “empirical” matrix el-
ements for the case of N = 83.

We have also calculated neutron separation energies for
the N = 83 isotones using the “standard” interaction (14)
with an addition of the short-range two-body spin-orbit
term that was determined in [17] from a proper description
of the mean-field spin-orbit splitting in light nuclei. It has
the form

ϑ̂ls(1, 2) = VLS · exp
(
− r212
r20ls

)
L̂12 (ŝ1 + ŝ2) ;

L̂12 =
1
2
(r1 − r2)× (p̂1 − p̂2) , (18)

where r0ls = 1.0 fm and VLS = −80 MeV. This inter-
action is the same in triplet-even and triplet-odd states,
but, due to the Pauli principle and to its short range,
only the triplet-odd states contribute in practice to the
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Table 1. Single-particle energies in 78Ni corresponding to the potential (18). “Var 1” is the “Set 3” for 208Pb taken from [15]
with V0 = −51.99 MeV, V�s · r2

00 = 32.70MeV · fm2, β = 1.36, β�s = −0.6, r00 = 1.27 fm, r0c = 1.25 fm, a(p) = 0.73 fm,
a(n) = 0.72 fm. “Var 2” is the “Set 2” taken from [15] (it was also used in [12] for the description of the mass surface of nuclei
close to 78Ni) with V0 = −51.5 MeV, V�s · r2

00 = 35.7MeV · fm2, β = β�s = 1.39, r00 = 1.27 fm, r0c = 1.25 fm, a(p) = 0.67 fm,
a(n) = 0.55 fm. “Var 3” is the same as “Var 1”, but with V�s · r2

00 = 36.0MeV · fm2 and β = 1.42.

π n�j Var 1 Var 2 Var 3 ν n�j Var 1 Var 2 Var 3

π 1s1/2 −42.73 −42.85 −43.14 ν 1s1/2 −34.15 −34.45 −33.73
π 1p3/2 −35.67 −36.12 −36.10 ν 1p3/2 −27.67 −28.21 −27.33
π 1p1/2 −34.56 −34.62 −34.88 ν 1p1/2 −26.25 −27.19 −25.75
π 1d5/2 −27.64 −28.46 −28.10 ν 1d5/2 −20.54 −21.10 −20.31
π 1d3/2 −25.21 −25.08 −25.44 ν 1d3/2 −17.41 −18.69 −16.85
π 2s1/2 −24.20 −24.38 −24.56 ν 2s1/2 −17.40 −17.70 −17.05
π 1f7/2 −18.87 −20.08 −19.39 ν 1f7/2 −12.94 −13.34 −12.85
π 1f5/2 −14.77 −14.27 −14.88 ν 2p3/2 −9.29 −9.02 −9.04
π 2p3/2 −14.59 −14.86 −14.97 ν 1f5/2 −7.74 −9.07 −7.11
π 2p1/2 −13.07 −12.67 −13.29 ν 2p1/2 −7.49 −7.46 −7.07
π 1g9/2 −9.56 −11.16 −10.14 ν 1g9/2 −5.02 −5.11 −5.08
π 1g7/2 −3.60 −2.53 −3.58 ν 2d5/2 −1.93 −1.07 −1.81

ν 3s1/2 −1.14 −0.39 −0.99
ν 2d3/2 0.30 0.82 0.54
ν 1g7/2 2.06 1.16 2.68
ν 1h11/2 2.94 3.34 2.76

spin-orbit splitting providing its proper isospin depen-
dence (see [15]). The short-range spin-orbit interaction
(18) was substituted for the long-range spin-orbit term
in the interaction from [16]. The results of such calcula-
tions are illustrated in fig. 5. A comparison of fig. 4 and
fig. 5 shows that the spin-orbit term does not essentially
change the results of our calculations.

Concluding this section, we present the results on sepa-
ration energies in the third region of nuclides —the region
of the utmost neutron-rich nuclei in the vicinity of 78Ni,
lying on the path of the astrophysical r-process. We note
here, that the calculations of single-particle spectra per-
formed by using the phenomenological potential reveal a
close disposition of the proton single-particle orbits 2p3/2

and 1f5/2 in this region of the nuclidic chart. Table 1 lists
the calculated results on the single-particle proton and
neutron energies in 78Ni using different sets of parameters
for the potential

U(r, σ̂) =
U0

1 + exp[(r −R)/a]

+U�sr
2
00

1
r

d
dr

[
1

1 + exp[(r −R)/a]

]
�̂ · ŝ , (19)

where U0 = V0(1+ 1
2β

N−Z
A τ3), U�s = V�s(1+ 1

2β�s
N−Z

A τ3),
R = r00A

1/3, τ3 = 1 for protons and τ3 = −1 for neutrons
(for protons the potential of a uniformly charged sphere
with the radius Rc = r0cA

1/3 has been added).
One can see from table 1 that the sequence of the

proton 2p3/2 and 1f5/2 orbitals can be interchanged by
a small variation of parameters entering eq. (19). Conse-
quently, we made self-consistent Hartree-Fock calculations
using the Skyrme III interaction, the results are shown in
table 2. These calculations were performed by including
(variant SIII-1) and omitting (variant SIII-2) spin density

Table 2. Single-particle energies in 78Ni from self-consistent
calculations.

π n�j SIII-1 SIII-2 ν n�j SIII-1 SIII-2

π 1d5/2 −30.70 −30.95 ν 1d5/2 −26.60 −26.88
π 1d3/2 −27.99 −27.52 ν 1d3/2 −23.88 −23.44
π 2s1/2 −25.82 −25.74 ν 2s1/2 −21.68 −21.58
π 1f7/2 −20.20 −20.55 ν 1f7/2 −16.17 −16.64
π 1f5/2 −15.11 −14.50 ν 1f5/2 −11.07 −10.36
π 2p3/2 −14.05 −14.03 ν 2p3/2 −10.73 −10.70
π 2p1/2 −12.64 −12.46 ν 2p1/2 −9.06 −8.89
π 1g9/2 −9.29 −9.68 ν 1g9/2 −5.71 −6.29

ν 2d5/2 −1.01 −1.04
ν 3s1/2 −0.28 −0.25
ν 2d3/2 0.54 0.64
ν 1g7/2 1.55 2.30

terms contributing to the spin-orbit splitting, while the
Coulomb exchange terms were treated in the Slater ap-
proximation. The proton and neutron densities in 78Ni,
corresponding to the SIII-1 calculation are presented in
fig. 6. One can see that the neutron mean square-root ra-
dius in 78Ni (rn = 4.206 fm) is considerably larger than
the proton one (rp = 3.962 fm). We have also calculated
the total binding energy Btot of 642.2 MeV in 78Ni, which
should be compared to the empirical total binding energy
of 641.4 (1.1) MeV derived from the systematics [13]. The
analogous densities for 56Ni are illustrated by fig. 7.

The proton 2p3/2 and 1f5/2 orbitals are close to each
other and their mutual separation may be changed by a
small variation of the parameters. At the same time, the
experimental data on the single-particle spectra in nuclei
close to 78Ni are not available yet. Therefore in fig. 8 we
present the Bν values calculated using interaction (14) and
making two assumptions on the sequence of the 2p3/2 and
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Fig. 6. Proton and neutron densities in 78Ni.
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Fig. 7. Proton and neutron densities in 56Ni.

π
π

Fig. 8. Neutron binding energies for the N = 51 isotones close
to 78Ni. Open circles (AME95) show the empirical data [13],
while triangles are the results of calculations performed by us-
ing the “standard” interaction (14) and corresponding to dif-
ferent variants of the relative disposition of the proton 2p3/2

and 1f5/2 orbits in nuclei close to 78Ni.

1f5/2 orbitals. A good agreement with the experiment is
obtained in the case when the proton state 2p3/2 is the
lower one. This conclusion is also valid if we include the

π
π

Fig. 9. The same as in fig. 8, but with the addition of the
short-range spin-orbit term to interaction (14).

short-range spin-orbit term in the interaction (see fig. 9).
Thus, the information on the neutron separation energies
in the chain of isotones with N = 51 allows us to get a
conclusion on the characteristics of single-particle spectra
in the region of 78Ni.

6 Conclusion

In this paper we propose a new method for the calculation
of one-nucleon separation energies in the chains of isotopes
or isotones. This method is based on the multiparticle shell
model and may be successfully applied for spherical nu-
clei not far from the closed shells. We demonstrate a good
agreement with the experiment for proton binding ener-
gies in the chain of isotopes with Z = 83 and for neutron
binding energies in the chain of isotones with N = 127.
At the same time, the obtained disagreement with the
existing systematics [13] concerning the neutron binding
energies in the chain of isotones at N = 83 may stimu-
late more detailed experimental studies of these nuclear
characteristics. In fact, the latest experimental data [19]
as well as the results of recent calculations [21] based on
the other approach also demonstrate the existence of the
staggering effect in neutron binding energies for the iso-
tones with N = 83. Our calculations based on the mul-
tiparticle shell model manifest the value of the neutron
separation energy in 79Ni of about 0.65 MeV. This mag-
nitude is smaller than that of the neutron binding energy
in 79Ni obtained in single-particle calculations (the aver-
age value of the B2d5/2

ν is about 1.3 MeV, see tables 1
and 2). However, the magnitude of the neutron binding
energy in 79Ni obtained in our paper by using the multi-
particle shell model is rather close to the value Bν = 0.52
MeV for 79Ni from ref. [21]. At the same time, one should
mention that it would be more correct to identify the neu-
tron separation energy not with the single-particle energy
of the upper neutron (with the inverse sign), but rather
with the difference of the binding energies of the corre-
sponding neighbouring nuclei that differ by one neutron.
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Calculating the values of the binding energies of 79Ni and
78Ni in the framework of the Hartree-Fock method, we ob-
tain the value of Bν in 79Ni equal to ∼ 0.8 MeV, that is
also a bit smaller than the value obtained from the single-
particle spectra, see table 2. So, the value of Bν in 79Ni of
about 0.65 MeV obtained by using the multiparticle shell
model seems to be reasonable.

This work was performed under the support of the Rus-
sian Foundation for Basic Research (project No. RSGSS-
1124.2003.2).
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